
1

ROMA
User-Customizable NoSQL

Database in Ruby

R a k u t e n , I n c . , R a k u t e n I n s t i t u t e o f T e c h n o l o g y | M a s a y a M o r i

2

Introduction

• 森 正弥 （もり まさや）

• 楽天株式会社 執行役員

• 楽天技術研究所 所長

• 職掌

– 開発部署のマネジメント

– 研究開発の推進・統括

Masaya Mori

Twitter: @emasha

3

Rakuten Institute of Technology

Turning emerging and growing new technology seeds
into new business/service opportunities

to enrich the internet life (& real life) all over the world

Mission

More Than Web
- Your great reality through emerging technologies -

Concept Tokyo & NY

Strategic R&D organization for Rakuten group

4

Global R&D has begun.

New YorkTokyo

30 in Tokyo & 10 in NY

5

Issues and our R&D area

• On basis of that, we progress three
following R&D area to provide solution in
the near future.

The internet has been growing to be diverse,
huge, complicated and high-valued.

RealityIntelligencePower

・Multimedia Processing
・Ubiquitous / next UI

・Distributed computing
・High performance computing

・Knowledge mining
・NLP / Recommender

6

Unite, Contribution to Academia

Promote academic researchers
to exploit Rakuten’s web public data

・share R&D with external researchers
・increase data & service awareness of people

Post / publish

R&D symposiumData Ecosystem

Expected results

7

Agenda

• Background

• Features of ROMA

• Overall architecture of ROMA

• Plug-in architecture and its domain specific language

• Conclusion

8

Internet Service

• User-driven service
– Release is just a beginning.
– As per user’s request, always Improve, always Advance.

• Software runs on Sever side
– Can change any time
– Big gap between package software and server side application

• Flexibility, Speed > Perfect
– Lightweight Language

• Ex. Ruby, Perl, Python, etc.

– A.R.C.
– Schema-less

• CouchDB, MongoDB

– Virtualization, Cloud

9

Internet technology

• Advantage of Open Source
– Risk of vendor rock-on
– Easy to start
– Collective Inteligence, Collective Development

• Simple & Loose
– HTTP
– REST + JSON > SOAP or EBXML or EJB
– MySQL, memcached

• Scalability
– Load balancing
– Cache
– Distributed Cache
– Disk I/O is always too slow

10

High Performance

• Importance of good performance
– Amazon : 0.1s of latency -> down 1% sales
– Google : 0.5s extra rending time -> drop 20% traffic
– Generally, 1sec delay means ..

• Down 11% Page Views
• Down 7% Conversions
• Down 16% Customer Satisfaction

– Lost tens of millions yen by 5 minutes service down

• To achieve high performance website
– Reduce size of HTML, Javascript
– Local Cache, Ajax
– On memory solution with consistency
– SSD > HDD
– Less latency
– GPGPU

11

High availability

• 24/7
– Downtime = Lose profit

• Redundancy
– Power
– Network
– Load balancer
– BGP
– RAID
– Replication and Backup
– Data Center
– Operator

• BCP for disaster
– Big earchquake

12

Big Data, the direction

• New value from big data
– Data mining
– Suggestion, Recommendation
– Personalization

• Technology to deal with big data
– Cassandra
– Hadoop
– Lucene + Solr Cloud
– It’s referred to as NoSQL roughly.

• Processing ex. MapReduce
• Storing ex. KVS

• Search
– Answer within 0.1s from over 70 million items

• BI
– Can provide analyzed data to sales & marketing
– Also provide tools reflecting knowledge of statics

13

Storing: NoSQL databases

• Needs for NoSQL databases are on the increase in
order to easily store surging data

• Basic features of several NoSQL databases are
– High scalability
– High availability
– High throughput
– Other features vary by databases

• ROMA
– Started development with Matz in 2007
– Open sourced in Oct. 2009

• See http://github.com/roma/roma/

14

ROMA Usage in Rakuten

• ROMA is used in various Rakuten services
– ROMA runs on dozens of servers
– Various types of data are stored

• E.g. session data, personal page view history, etc

• Rakuten, Inc.
– It provides many e-commerce platforms

• E.g. Rakuten Ichiba, Rakuten Travel, Rakuten Books, etc

– Rakuten has over 70 millions of users

15

Application-Specific Needs

• Many specific needs from application-side
– These specific needs come from actual service development

sites

• For example, users say
– “How can we store structured data?”

• Not value, but…. Map? List?

– “How can we easily process stored data on DWH or Hadoop?”
– “How can we delete null character that was stored somewhere

by error?”
– “How can we delete duplicate data that were accidentally

stored somewhere, maybe by bugs of app?”

• We want to respond to all of these needs
– We are trying to solve these problems, one by one.
– Thereby, we hope we focus on what really matter on site.

16

Case Study: List Operation in Rakuten Travel

• “How can we easily access list data stored in ROMA?”
– Request from Rakuten Travel to apply page view history

using ROMA
– Page view history function is useful function for users

17

Case Study: List Operation in Rakuten Travel

• The application stores list data for users in database
– Key: user ID, Value: a list of pages that the user viewed

• In such case as memcached,
to delete list data stored in NoSQL database, application…
1. Gets binary data of specified key
2. Deserializes it as list data
3. delete the list data according to user requirement
4. Serializes the list data to binary data
5. Set it to database

“delete 2nd elm into list” req

① get binary data

② deserialize binary as list data

③ delete 2nd elm into list

④ serialize list data to binary

⑤ put binary data

Memcached cluster

18

ROMA

• User-customizable NoSQL database in Ruby

• Features
– Key-value model
– High scalability
– High availability
– Fault-tolerance
– Better throughput
– And…

• To meet application-specific needs, ROMA provides
– Plug-in architecture
– Domain specific language (DSL) for Plug-in

• ROMA enables meeting the above need in Rakuten Travel

19

Overall Architecture

• ROMA integrates several well-known techniques to achieve
scalability, availability and fault-tolerance
– For example, consistent hashing, virtual nodes, chain

replication-like mechanism, lamport clocks, etc

• ROMA node consists of 4 modules
– Network IO module: Receiving data from clients and other

ROMA nodes
– Command exec module: Creating and executing commands
– Routing module: Maintaining ring information
– Storage module: Storing data

Command Execution
module

Storage module

Network IO module

Routing module

20

Data Partitioning

• Consistent hashing and virtual nodes
– ROMA consists of several nodes that run on servers
– Many virtual nodes are allocated on 1-dimensional hash space

of 32-bits

• Each virtual node has a 32-bits ID
– To determine which ROMA node to store key in.
– SHA-1 hash

ROMA

E.g. ROMA consists of three nodes

21

Data Accessing

• In getting value of specified key from ROMA
1. User accesses to ROMA nodes
2. The node determines others that are responsible for value of

specified key
3. The node gets the value from the other node
4. The node returns it to user

ROMA

E.g. ROMA consists of three nodes

①

②

22

Sharing routing table

• Each node maintains and periodically shares routing table
with others
– Routing tables: range of hashs, machines, port
– If several versions of routing table exist, node updates the

latest version.
– Lamport clocks and Merkle hash tree

• ROMA node multicasts with others to share routing tables
– We use multicast though being aware of scalability.
– Current version of ROMA doesn’t use gossip-based protocol.

ROMA

E.g. ROMA consists of three nodes

Sharing ring information

23

Client has cache of routing table

• ROMA client enables direct accessing to data
– Client has a cache of routing table.
– It checks to see if routing table is updated or not every 3 sec.

• In getting value of specified key, ROMA client
1. Determines nodes according to cache
2. Gets the value from the node directly

ROMA

E.g. ROMA consists of three nodes

24

Data Replication

• Automatic data replication
– Client waits until data replication finishes successfully.
– If data replication failed, the data is push to asynchronous

queue in node, which it will retry replication.
– Eventual consistency

• Each data is replicated at N nodes
– N: this parameter is configured in advance

ROMA

E.g. ROMA consists of three nodes

25

Message Protocol

• Extended Memcached protocol over TCP
– Used between clients and ROMA nodes

• Memcached client libraries are also available.
– Without distribution concern

• User can access any node and ROMA forwards it later.

– Users can use telnet.
$ telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.
Escapecharacter is ‘^]’.

set foo 0 0 3
bar
STORED

get foo
VALUE foo 0 3
bar
END

User can set/get data in ROMA

with telnet like memcached

26

Failure Detection

• Heartbeat detection
– Each node multicasts periodic heartbeat with others
– Heartbeat is flooded every 1 sec.

• If heartbeat is missed continuously, the node is
declared as failed
– Failover
– Removal of the node

ROMA

E.g. ROMA consists of three nodes

Sending heartbeat

27

Plug-in Architecture

• Plug-ins allow users to extend behavior of ROMA

• For example,
– Command plug-ins enable to change behavior of command

module
– Users can append user-defined commands to ROMA
– Current version provides plug-ins for command module only

• Plug-ins for other modules coming soon
• For example, storage-plug-in.

Command Execution
module Routing moduleCommand Plug-ins

Storage module

Network IO module

28

Case Study: Commands for List Operations

• ROMA allows defining commands for list operations as
plug-ins
– Users can atomically access list data stored in ROMA as

value

“delete 2nd elm into list” req

delete 2nd elm into list data

Memcached cluster

ROMA

“delete 2nd elm into list” req

① get binary data

② de-serialize binary data

③ delete 2nd elm into list

④ serialize list data

⑤ put binary data

29

Case Study: Commands for List Operations

alist_insert <key> <index> <bytes> [forward]¥r¥n
<data block>¥r¥n
#
(STORED|NOT_STORED|SERVER_ERROR <error message>)¥r¥n
def ev_alist_insert(s)

hname, k, d, vn, nodes = calc_hash(s[1])
data = read_bytes(s[3].to_i); read_bytes(2)
return forward2(nodes[0], s, data) if nodes[0] != @nid
ddata = @storages[hname].get(vn, k, d)
v = [[], []] unless ddata
v = Marshal.load(ddata) if ddata
v[0].insert(s[2].to_i, data)
v[1].insert(s[2].to_i, Time.now.to_i)
expt = 0x7fffffff
ret = @storages[hname].set(vn, k, d, expt, Marshal.dump(v))
@stats.write_count += 1
if ret

redundant(nodes[1..-1], hname, k, d, ret[2], expt, ret[4])
send_data("STORED¥r¥n")

end
send_data("NOT_STORED¥r¥n") unless ret

end

Method declaration

for list command

named “alist_insert”

As for lines, like this.

User can use also
Telnet.

30

Command Plug-in Mechanism

• Command exec module
– Loads plug-in and registers plug-in method at startup

• Plug-in method has method name starting with ev_
• For example, ev_alist_insert is plug-in method
• Ruby allows adding new methods to classes dynamically

– In calling plug-in method
1. Receives data from network IO module and creates new command
2. Finds registered plug-in method responding to the command
3. Calls plug-in method
• Uses send method provided by Ruby.

Command Execution
module Routing module

Storage module

Command Plug-ins

Network IO module

31

DSL for Command Plug-in

• DSL enables users to simply declare commands
– Without distribution concern (data replication, data

partitioning)
– def_write_command_with_key_value

• Allows easily defining commands for storing structured data
in ROMA

• For example,
– User can declare a alist_insert command with DSL

alist_insert <key> <index> <bytes> [forward]¥r¥n
<data block>¥r¥n
#
(STORED|NOT_STORED|SERVER_ERROR <error message>)¥r¥n
def_write_command_with_key_value :alist_insert, 3 do |ctx|

v = [[], []]
v = Marshal.load(ctx.stored.value) if ctx.stored
v[0].insert(ctx.argv[2].to_i, ctx.params.value
v[1].insert(ctx.argv[2].to_i, Time.now.to_i)
expt = 0x7fffffff
[0, expt, Marshal.dump(v), :write, 'STORED']

end

32

Commands for Map Operations with DSL

• Another example: User can declare map_set command
with DSL
– User can store map data in ROMA as value of specified key

map_set <key> <mapkey> <flags> <expt> <bytes>¥r¥n
<data block>¥r¥n
#
(STORED|NOT_STORED|SERVER_ERROR <error message>)¥r¥n
def_write_command_with_key_value :map_set, 5 do |ctx|

v = {}
v = Marshal.load(ctx.stored.value) if ctx.stored
v[ctx.argv[2]] = ctx.params.value
expt = ctx.argv[4].to_i
if expt == 0

expt = 0x7fffffff
elsif expt < 2592000

expt += Time.now.to_i
end
[0, expt, Marshal.dump(v), :write, 'STORED']

end

33

DSL Mechanism

• def_write_command_with_key_value is declared as method in Ruby

def def_write_command_with_key_value(cmd, idx_of_val_len, forward = :one_line, &block)
define_method "ev_#{cmd}" do |s|
params = CommandParams.new
params.key, params.hash_name = s[1].split("¥e")
params.digest = Digest::SHA1.hexdigest(params.key).hex % @rttable.hbits
params.vn = @rttable.get_vnode_id(params.digest)
params.nodes = @rttable.search_nodes_for_write(params.vn)
params.value = read_bytes(s[idx_of_val_len].to_i)
read_bytes(2)
stored = StoredData.new
stored.vn, stored.last, stored.clk, stored.expt, stored.value =

@storages[params.hash_name].get_raw(params.vn, params.key, params.digest)
stored = nil if stored.vn == nil || Time.now.to_i > stored.expt
ctx = CommandContext.new(s, params, stored)
ret = instance_exec(ctx, &block)
if ret

redundant(ctx.params.nodes[1..-1], ctx.params.hash_name,
ctx.params.key, ctx.params.digest, ret[2], expt, ret[4])

send_data("#{msg}¥r¥n")
end
send_data("NOT_#{msg}¥r¥n") unless ret

end

34

Conclusion

• Background
– Spread of NoSQL databases
– application-specific needs

• Features of ROMA
– To respond to specific needs, ROMA provides user-customizable

interfaces
– Plug-in architecture and its domain specific language

• Overall architecture of ROMA
– It integrates several well-known techniques

• Consistent hashing, chain replication-like mechanism, lamport
clocks, etc

• Plug-in architecture and DSL
– Plug-ins allow enhancing behavior of ROMA easily

35

Thank you for kindly attention

